Findings
Google secrets found in logs
Updated: June 19, 2025
Description
Tokens that match the format for Google secret keys were found in the logs of the affected API.
Google secrets refer to sensitive tokens or keys used for authentication and authorization in Google Cloud services and APIs. These can include API keys, OAuth tokens, service account keys, or other credentials that grant access to Google services.
Remediation
Google secret keys should not be transmitted over the network. Review the logs in question and verify that the transmission of secrets is happening in accordance with your security policies.
Security Frameworks
APIs and the systems supporting them typically contain complex configurations, meant to make the APIs more customizable. Software and DevOps engineers can miss these configurations, or don't follow security best practices when it comes to configuration, opening the door for different types of attacks.
Security misconfiguration is commonly a result of unsecure default configurations, incomplete or ad-hoc configurations, open cloud storage, misconfigured HTTP headers, unnecessary HTTP methods, permissive Cross-Origin resource sharing (CORS), and verbose error messages containing sensitive information.
Initial Access consists of techniques that use various entry vectors to gain their initial foothold within a network. Techniques used to gain a foothold include targeted spearphishing and exploiting weaknesses on public-facing web servers. Footholds gained through initial access may allow for continued access, like valid accounts and use of external remote services, or may be limited-use due to changing passwords.
Adversaries may obtain and abuse credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Compromised credentials may be used to bypass access controls placed on various resources on systems within the network and may even be used for persistent access to remote systems and externally available services, such as VPNs, Outlook Web Access, network devices, and remote desktop. Compromised credentials may also grant an adversary increased privilege to specific systems or access to restricted areas of the network. Adversaries may choose not to use malware or tools in conjunction with the legitimate access those credentials provide to make it harder to detect their presence.
Credential Access consists of techniques for stealing credentials like account names and passwords. Techniques used to get credentials include keylogging or credential dumping. Using legitimate credentials can give adversaries access to systems, make them harder to detect, and provide the opportunity to create more accounts to help achieve their goals.
Adversaries may obtain and abuse credentials of existing accounts as a means of gaining Initial Access, Persistence, Privilege Escalation, or Defense Evasion. Compromised credentials may be used to bypass access controls placed on various resources on systems within the network and may even be used for persistent access to remote systems and externally available services, such as VPNs, Outlook Web Access, network devices, and remote desktop. Compromised credentials may also grant an adversary increased privilege to specific systems or access to restricted areas of the network. Adversaries may choose not to use malware or tools in conjunction with the legitimate access those credentials provide to make it harder to detect their presence.
Adversaries may use brute force techniques to gain access to accounts when passwords are unknown or when password hashes are obtained. Without knowledge of the password for an account or set of accounts, an adversary may systematically guess the password using a repetitive or iterative mechanism. Brute forcing passwords can take place via interaction with a service that will check the validity of those credentials or offline against previously acquired credential data, such as password hashes.
Adversaries may attempt to position themselves between two or more networked devices using an adversary-in-the-middle (AiTM) technique to support follow-on behaviors such as Network Sniffing, Transmitted Data Manipulation, or replay attacks (Exploitation for Credential Access). By abusing features of common networking protocols that can determine the flow of network traffic (e.g. ARP, DNS, LLMNR, etc.), adversaries may force a device to communicate through an adversary controlled system so they can collect information or perform additional actions.
Collection consists of techniques adversaries may use to gather information and the sources information is collected from that are relevant to following through on the adversary's objectives. Frequently, the next goal after collecting data is to steal (exfiltrate) the data. Common target sources include various drive types, browsers, audio, video, and email. Common collection methods include capturing screenshots and keyboard input.
Adversaries may attempt to position themselves between two or more networked devices using an adversary-in-the-middle (AiTM) technique to support follow-on behaviors such as Network Sniffing, Transmitted Data Manipulation, or replay attacks (Exploitation for Credential Access). By abusing features of common networking protocols that can determine the flow of network traffic (e.g. ARP, DNS, LLMNR, etc.), adversaries may force a device to communicate through an adversary controlled system so they can collect information or perform additional actions.
When an actor claims to have a given identity, the product does not prove or insufficiently proves that the claim is correct.
The product contains hard-coded credentials, such as a password or cryptographic key.